
Using Scripts to Support SMCRA Business Processes1

Bill Card2

Abstract. The Surface Mining Control and Reclamation Act of 1977 (SMCRA)
authorizes states and tribes to regulate surface coal mining operations under
approved programs. A Geographic Information System (GIS) implemented to
support the regulatory activities of an approved program involves the creation,
management, and maintenance of numerous spatial datasets and attribute tables
describing coal mining features and their potential environmental impacts. A
SMCRA regulatory program GIS must provide useful and timely information
products to its user community of managers, permit reviewers, inspectors, coal
mining industry, local and state governments, academia, and the general public.

A script is a simple program written in a utility language or an application’s
proprietary language. For GIS, scripts offer a high degree of customization and
functionality to reliably execute lengthy data processing steps within a short
period of time. In a regulatory program GIS with established datasets of
standardized coal mining features, these capabilities can help to automate batch
procedures, perform quality control checks on data, derive high quality data to
support analysis, and produce useful, consistent information products.

At the Office of Surface Mining Reclamation and Enforcement (OSMRE)
Knoxville Field Office (KFO) in Tennessee, GIS scripts have been used for
extracting selected coal mine attributes from FoxPro databases such as
Inspectable Unit List (IUL) data to join with spatial data of permit boundaries in
KFO GIS ArcSDE geodatabase, creation and updating of new coal mining
datasets in the ArcSDE geodatabase based on attribute values, calculating
permitted acreage and water quality impacts by watersheds for use in determining
watershed sampling priorities for surface water quality, supporting annual
reporting of acreages for bond release reports, and using water quality data from
Microsoft SQL Server databases to create analytical spatial datasets for display in
ArcMap of water quality impacts in the Tennessee coalfield.

Additional Key Words: GIS, Geoprocessing

1Paper was presented at the 2008 “Incorporating Geospatial Technologies into SMCRA Business
Processes”, March 25 - 27, 2008, Atlanta, GA.

2Bill Card is GIS Coordinator at U.S. Department of the Interior’s Office of Surface Mining
Reclamation and Enforcement in Knoxville, TN, 37902.

Introduction

 The Surface Mining Control and Reclamation Act of 1977 (SMCRA) authorizes states and

tribes to regulate surface coal mining operations within their respective areas under specific

regulatory programs approved by the Office of Surface Mining Reclamation and Enforcement

(OSMRE). Most all approved regulatory programs implement information systems to help them

store, maintain, and use large volumes of data about surface coal mining operations to support

regulatory activities and effectively operate their approved programs. A very large percentage of

the actions taken by the approved Regulatory Authority (RA), whether these be permitting

decisions regarding the potential impacts of a proposed surface coal mining operation,

enforcement actions on active coal mining operations, or bond release decisions at reclaimed

coal mines, involve geographic location of the coal mining operation.

 Some regulatory programs also implement Geographic Information System (GIS) technology

to support regulatory activities affected by geographic location issues. A SMCRA coal mining

regulatory GIS involves the creation, management, and maintenance of numerous spatial datasets

and attribute tables describing coal mining features. Useful and effective software tools can help

the RA obtain and provide timely information products to its user community of managers,

permit reviewers, inspectors, coal mining industry, local and state governments, academia, and

the general public.

Scripts for Geoprocessing Coal Mining Spatial Data

 A GIS imposes significant demands on computing resources to process the very large

number of coordinate data points stored in coal mining geospatial data during analysis. In

addition, information products derived from geospatial data often require multiple spatial data

sets during lengthy and complicated processing steps. Standard practice among most RA’s is to

manually produce these information products on an as-needed basis by personnel specially

trained at great expense using standard Commercial-off-the-Shelf (COTS) software provided

through OSM’s Technical Innovation and Professional Services (TIPS) program. To promote

greater programmatic use of GIS by a RA, ensure consistent results, standardize and document

information product methodology, reduce errors, and reduce time, a more automated method is

required.

Scripts

 A script is a sequential list of instructions, usually stored in a file, which are interpreted and

executed by another software application. Scripts differ from compiled programs which are

executed directly by a computer processor. Scripts are written in a software application’s

proprietary language or a utility language. Because scripts run in an interpreted environment,

they allow “write and run” execution, and no compiler is required.

 Scripts offer a high degree of customization, require less code and development time than

system-level languages, and are easier for domain knowledge experts (subject matter experts in a

non-IT professional discipline) to learn than a system-level language. Scripts offer significant,

practical advantages in the management and use of coal mining geospatial data.

Automation

 Scripts offer a high degree of customizable functionality to reliably and consistently execute

lengthy data processing steps within a short period of time. GIS scripts can automate repetitive

tasks, provide rapid execution of complex tasks during geoprocessing operations, help

standardize a manual process for consistent results to reduce errors, increase reliability, increase

productivity, and save time. In a regulatory program GIS, these capabilities can help to automate

batch procedures, perform quality control checks on spatial data and attributes, derive high

quality data to support analysis, and produce useful, consistent information products. For RA’s

using ESRI’s ArcGIS software provided through TIPS, available scripting solutions include Arc

Macro Language (AML) for use in ArcInfo Workstation and Python, a utility language, for use

with ArcGIS Desktop. Other scripting solutions available in ArcGIS include VBScript, JScript,

and Perl. This paper will briefly review some reasons for using AML and Python and provide

examples of their use from the Tennessee Federal Regulatory Program.

Arc Macro Language

 Arc Macro Language is ESRI’s proprietary programming language for use with ArcInfo

Workstation. AML is a high-level, algorithmic language that provides full programming

capabilities and a set of tools to create user interfaces for custom applications. While AML is no

longer actively supported by ESRI, it is fully functional on all workstations with full copy

installations of ArcGIS that includes ArcInfo Workstation. For RA students who attended TIPS

classes in ArcInfo Workstation in previous years and are interested in using this software,

command line ArcInfo commands, functions, and directives can be stored as procedures in text

files and executed through the AML processor at the ArcInfo command prompt. For TIPS users

running AML scripts, ArcInfo Workstation must be installed on their workstations.

Python

 Python is an open source object-oriented programming language maintained by the Python

Software Foundation. Python is a modern software language with extensive support and can be

used for many types of software development on multiple platforms. Numerous online

references, programming books, and other technical resources are available. ESRI offers

training courses in writing geoprocessing scripts using Python. In ArcGIS, ESRI implements a

Geoprocessor, a Component Object Model (COM) software object for access by other software

languages. Python can call this COM object and execute syntactical commands to perform

geoprocessing tasks. Geoprocessing commands (union, clip, intersect, etc.) can be written

directly in a Python script if the syntax is known, or these can be written graphically using

ESRI’s ModelBuilder software in ArcGIS Desktop. ModelBuilder is a visual workflow model in

which commands exist as graphic objects that can be dragged onto a canvas and positioned by

using a mouse. After debugging, the ModelBuilder script can be saved or exported as a Python

script. Commands in the Python script are written as text and contain all required syntax.

Supporting SMCRA Business Processes

 Information systems at SMCRA RA’s characteristically provide custom user interfaces for

standard reporting capabilities on the status of regulatory functions such as permitting,

inspection, bond release, and other programmatic activities. These user interfaces generally

require only domain knowledge for successful operation. Ideally, the user has little or no need to

have Information Technology (IT) skills to do their jobs. However, these systems are dependent

on hard-coded table attributes keyed by hand, such as area calculations, which are prone to data

entry errors and may be extremely difficult to maintain or verify for accuracy.

 GIS eliminates manual calculations of spatial features. Coal mining feature boundaries, such

as permit boundaries, critical earth fill “footprint” boundaries, sediment basin boundaries, etc.

can be added to a dataset as records in a spatial database. These can quickly and easily be

visually examined for accuracy. GIS software automatically calculates area of the feature when

added to the database without user intervention to add an area attribute. If the boundary is

correct, the area calculation is automatically correct. However, a GIS specialist is often required

to use the spatial datasets in exotic software with arcane requirements to successfully produce a

useable information product. GIS scripting can provide a simple, easy to use, custom interface

for the domain knowledge user to conduct geoprocessing of spatial data that will produce a

standard information product without having GIS skills or knowing how to use GIS software.

Text Reports

 Frequently, what is needed from any information system is a status report. This type of

report could be a simple text document containing columns of tabular data arranged in order by

some criteria of interest. A bond release report (Fig. 1) is an example of such a report.

Figure 1. Partial report from AML script calculating bond release acres.

 In the example for Fig. 1, data was retrieved by an AML script from two separate

information systems, analyzed, and formatted to produce the report. Administrative information

was extracted from a dBASE file managed by a standard information system. Acreage figures

from this non-spatial system are unreliable. To obtain correct area calculations for the bond

release report, area figures were extracted from a bond increment spatial dataset contained in an

ArcSDE Geodatabase in Microsoft SQL Server. These area calculations were joined to the

administrative data for each permit undergoing bond release evaluation during the requested time

period.

 The ability to automate the extraction of data from different databases for comparison also is

useful in tracking the progress of GIS development at an organization (Fig. 2.).

Figure 2. Partial report from AML script identifying permit boundaries not

digitized.

The data in Fig. 2, like the previous example, was also retrieved, analyzed, and formatted by an

AML script extracting data from the same two separate information systems. This ability also is

useful in making other types of comparisons between two separate information systems, such as

comparing differences in permit acreages contained in the two systems. Permits with large

differences should be reviewed to determine the reason for the discrepancy, possibly due to

procedural errors in office workflow.

 Text reports also may include lists of permits arranged by date or acreage within an area

boundary such as a watershed or county, or perhaps calculations of specific attributes such as pH

of coal mining features arranged in ascending or descending order for specific study areas.

These types of reports require spatial analysis methods to select data located within a specific

geographic area of interest. GIS excels in spatial selection methodology and performing tasks

which are virtually impossible in a non-spatial information system. The combination of

powerful spatial analysis methods, ability to manage and analyze various attribute information

associated with spatial features, rapid calculation of large numbers of observations, ability to

format useful output as standardized information products, and user access through extremely

simple interfaces can be compelling reasons to consider scripting to automate a spatial process

(Fig. 3.)

Figure 3. Partial report from Python script calculating values within watersheds.

 The results shown in Fig. 3 are used to help identify and rank watersheds by importance

when allocating limited resources for field work to collect water samples during annual water

quality sampling efforts by the RA. Watersheds with higher scores are determined to be of

greater priority than those of lower scores. These tabular results were produced by a Python

script extracting multiple spatial datasets from an ArcSDE Geodatabase, performing multiple

analyses, and formatting the output report. During the analysis, individual permits located

within a specific watershed received point values calculated by multiplying the permit acreage

by a specific weighting factor for the permit area’s reclamation status. Permits in various stages

of active mining received higher weights than those in various stages of reclamation. These

individual permit point values were then summed within watersheds. The output report lists the

results by watershed in descending order for easy review by the user.

Dataset Production

 All spatial scripting operations that generate output reports also create datasets during

analysis for report production. However, scripting also can be used for the sole purpose of

creating or updating datasets.

 To create a spreadsheet of water quality observations from a large database only for a

specific geographic area requires spatial analysis methods (assuming a spatial dataset of location

coordinates exists and the database does not contain attributes for selection of records by area).

If performed by hand, these spatial analysis methods can be tedious and time consuming and

require GIS software training. GIS scripts can be used to perform the spatial analysis without

user knowledge of GIS methods if the script provides the user with a simple graphic interface

(Fig. 4) for selection of the area of interest as an attribute of the spatial dataset.

Figure 4. Simple graphic interface from AML script.

 During script execution, the user can be provided with simple graphic interfaces from which

selections can be made to sequentially obtain the criteria needed for analysis. For the water

quality spreadsheet example above, an initial choice is made to select a very large watershed.

This large watershed contains smaller watersheds from which subsequent choices are made by to

select the final geographic area. The boundary of this area is used to select point features located

within it (Fig. 5).

Figure 5. Example of selecting water quality sampling locations within a

watershed. Graphic display for illustration purposes only.

If these point features have unique identifiers corresponding to the water quality database, these

identifiers can then be used to select the desired water quality records from the database to create

the final database from which the spreadsheet can be produced (Fig. 6).

Figure 6. Example surface water records for a specific geographic area. Null values are

shown as zero.

 Scripts can support maintenance and updates of spatial datasets contained in a GIS. At the

Knoxville Field Office, a minimal number of attributes are maintained on spatial data, such as

permit boundaries (Fig. 7).

Figure 7. Minimal attributes maintained on spatial dataset of permit boundaries.

Graphic display not produced by script, for illustration purposes only.

Attributes of permit areas such as company name, mine name, date of issuance, etc. are

maintained in a standard database. A GIS script is used to extract appropriate attributes from the

external database and join it to the attribute table of the permit boundary spatial dataset (Fig. 8).

Figure 8. Attributes joined to spatial dataset from external database. Graphic display not

produced by script, for illustration purposes only.

By using a script, double keying of the same attribute values in two separate information systems

is eliminated. Having a single source for the attribute values reduces data entry error, leverages

existing data sources to be used in more ways, and saves time for GIS personnel to work on more

important tasks. If an attribute error is detected, there is only one location which must be

corrected. Additionally, the responsibility to correct attribute errors does not rest on GIS

personnel.

 Another example of using GIS scripts for automated updating and maintaining spatial

datasets in a GIS leverages the attributes from the imported data. Permits which meet specific

criteria based on their imported attributes are selected for the creation of new datasets (Fig. 9.)

Figure 9. Creation of new spatial datasets in an ArcSDE geodatabase after selection of attributes

using AML and Python GIS scripts.

 The example in Fig. 9 shows that only one spatial dataset contains the master geometry for

all permit boundaries. New permit applications received from the coal mining industry contain

AutoCAD drawing files depicting coal mining features on mining operations maps,

environmental resources maps, etc. The permit boundary is manually copied from CAD format

into a temporary GIS dataset of pending permits (pemits_pending) for tracking purposes. After

permit approval, the permit boundary is manually added to the permits dataset and deleted from

permits_pending. For legacy permits, GIS personnel digitize the permit boundary from paper

maps for manual addition to the permits dataset.

 The automated process described in Fig. 8 is used to create the permits dataset containing all

appropriate attributes (permits_all) from the external database using a script. After addition of

attributes, additional datasets can be created by selection of appropriate permit attributes in the

same script. For example, to create a dataset of only active coal producing permits

(permits_active), the script selects records (permits) from permits_all which do not have a permit

retire date (RETIRE_DT is Null). The field RETIRE_DT contains the date that permit is

“retired” in the external database from the active list of inspectable units. In this procedure,

there is only one copy of the permit geometry and it is used to generate all other datasets which

contain permit boundaries. When necessary to update a specific permit boundary, there is only

one location to make the necessary changes. Execution of the script generates new datasets

which require permit boundaries.

 A final example of using scripts for dataset production illustrates the ability of scripts to use

geoprocessing methods on data from many sources using a variety of spatial analysis techniques

to produce new and meaningful output datasets (Fig. 10).

Figure 10. Final dataset production by AML script. Graphic display not

produced by script; for illustration purposes only.

 Fig. 10 displays one of multiple new datasets created by script in a lengthy geoprocessing

session involving multiple spatial and non-spatial data sources. In this one example, records of

observed water quality-related violations in a SQL Server database were selected and tallied by

permit. The total number of observations was joined to a point dataset of permit locations using

the permit number. Interpolation was used to generate a grid from the point dataset of

observations. Additional grids were produced from other database records of geology, surface

water, and groundwater quality observations using this same method but not shown in Fig. 10.

These grids were combined to form a composite analysis of geologic-hydrologic anomalies in

the coalfield. After completion of the script to generate the datasets, the datasets were manually

loaded into ArcMap to produce the graphic for Fig. 10.

Implementing Scripts

Initiating AML Scripts

AML scripts can be executed in several ways. However, most users will not have GIS skills

and will not want to execute scripts from within a GIS software application. AML scripts can be

initiated without launching ArcInfo Workstation by double-clicking on an icon for a Windows

batch file or Python script containing the correct command syntax. On a Windows workstation,

to run the very simple AML script named myprogram.aml below:

&terminal 9999

&messages &popup

&type Hello, world!

&return

the contents of a Windows batch file would include:

@echo off

arc "&run myprogram.aml"

while a Python script would contain the following:

import os

os.system('arc "&run myprogram.aml"')

In a functional GIS script, many lines of code listing geoprocessing commands would be

executed instead of printing the simple “Hello, world” statement contained in myprograml.aml

above.

Using AML to Connect to External Databases

AML can connect to an ArcSDE spatial data server to download spatial datasets for use in

geoprocessing. In the following example, a connection is made to an ArcSDE server, a layer of

permit boundaries in the SDE geodatabase is downloaded to the workstation and converted to an

ArcInfo coverage, and the connection is closed:

dataset connect session1 <server> esri_sde <username> <password>

layer define layer1 sde session1 kfogis.SDE.permits shape polygon

layerexport layer1 coverage <coverage name>

layer remove layer1

dataset disconnect session1

AML can also connect to a Microsoft SQL Server database to download tables for analysis.

In the following example, a connection is made to a SQL Server database, a table is downloaded

as an INFO file, and the connection is closed:

connect sqlsrvr <SQL connection>

dbmsinfo sqlsrvr <SQL Server table> <INFO table>

disconnect sqlsrvr

To execute this code, an ODBC data source connection (“ SQL connection”) using Windows NT

authentication of the user to the Microsoft SQL Server must reside on the workstation. This

connection specifies the SQL Server database to be accessed and permissions. A system file

(“sqlsrvr”) provided during installation of ArcGIS also is required to enable AML to make this

connection and may be found on the workstation at C:\arcgis\arcexe9x\database\sqlsrvr.dbs .

Developing Python Scripts

Python scripts can be written entirely by hand if geoprocessing code syntax is known. A

number of resources are available to support scripting in the Python language. These include

Python technical reference manuals, on-line documentation at the Python Software Foundation

(http://www.python.org) and other Python Internet websites, and documentation within the software

itself. However, geoprocessing in Python is executed through the ESRI COM object known as

the Geoprocessor. All spatial operations are executed exclusively through the Geoprocessor.

Knowledge of how to use the Geoprocessor can be obtained through ESRI training courses or

careful study and application of code from the Geoprocessor Object Model Diagram (Fig. 11).

Figure 11. Screen capture of a small section of the Geoprocessor Object Model

Diagram for ArcGIS 9.2.

http://www.python.org/

Writing code from Object Model Diagrams is often difficult. ESRI Object Model Diagrams

sometimes contain omissions of critical details. In addition, ESRI help files installed with

ArcGIS often have weak documentation or contain errors due to omissions or outdated

information no longer applicable due to revised code.

A better method when writing Python code for use by the Geoprocessor is to use ArcGIS

ModelBuilder. This graphic application will allow a user to drag tools from ArcGIS ArcToolbox

onto the canvas of a model for graphic manipulation with a mouse (Fig. 12).

Figure 12. Model of a geoprocessing workflow built in ArcGIS ModelBuilder.

Once the objects have been loaded with appropriate datasets and meet functional requirements

for execution, they change color to indicate their readiness for use. When the model is complete,

it can be executed from the ModelBuilder application for testing. After debugging, the

developer can export the model to a Python script. This script will contain correct syntax for the

tools used from ArcToolbox without having to use an Object Model Diagram. However, Python

code written during export may need to be cleaned up to improve readability by a person, and

sometimes the code may not include all geoprocessing components to execute independently

from Python outside of ModelBuilder. For example, when writing Python code using data from

an ArcSDE server or SQL Server during an ArcMap session, ModelBuilder does not generally

include connection information to access the server.

Using Python to Connect to External Databases

Through the ESRI geoprocessor object, Python can work with spatial and attribute data

contained in directories or external database servers. For most RA’s, the ability to access data

contained in external sources is a critical feature of a GIS scripting language. In the following

example, Python is used to connect to an ArcSDE geodatabase and download an SDE polygon

layer of permit boundaries as an ArcInfo region coverage:

import sys, string, os, win32com.client

gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")

gp.Workspace = "Database Connections\\<sde connection file name>.sde"

gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Conversion Tools.tbx")

gp.overwriteoutput = 1

mypermits = "C:\\WorkSpace\\mypermits"

gp.FeatureclassToCoverage_conversion("kfogis.SDE.permits ''", mypermits, "", "double")

Python can also connect to Microsoft SQL Server database through the Geoprocessor in the

following example to download a SQL Server table to a dBASE file:

import sys, string, os, win32com.client

gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")

gp.Workspace = "Database Connections\\<odbc connection file name>.odc"

gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Conversion Tools.tbx")

dbo_SurfaceWater = "dbo.SurfaceWater"

WorkSpace = "C:\\WorkSpace"

gp.TableToTable_conversion(dbo_SurfaceWater, WorkSpace, "surface_water", "", "", "")

Using scripts to perform geoprocessing for creation of useful information products has many

practical advantages to the RA implementing a GIS for programmatic operations. This paper has

listed some brief examples to encourage exploration and future use of scripting.

Acknowledgements

 The technology described in this paper could not have been implemented at the Knoxville

Field Office without the continuous support of OSM’s Technical Innovation and Professional

Services (TIPS) program.

