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What are we modeling?

m Streamflow-WCMS-HSPF
m Ground water flow-GMS

m Effects from pumping mine pools at
different rates on ground water flow

- Low pump rates

- High pump rates
m Interaction of surface and ground water
m Case example: Spruce Laurel Fork



1

Tal

irg

West Y




Dewatered Spruce Laurel Fork




Historical Overview
Spruce Laurel Fork Watershed

m Study area of SLF watershed is 16,700 acres

= Pre-and post-SMCRA underground mining caused
dewatered certain reaches of 9.5 miles of SLF

m Spruce Laurel Fork is a losing stream
- Streamflow diverted to mines that develop pools

= 1991 flowing AMD artesian water flowed to
residents’ wells and residents’ homes

m 1992 pumping lowered the Hampton No. 3 mine
pool and eliminated downstream artesian effects

- Pumping continues to control the mine pool level



Location of mining In the Spruce
Laurel Fork Watershed
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Headwaters of Spruce Laurel Fork




Spruce Laurel Fork middle reaches




Surface Effects on Hydrology
from Subsidence



Subsided streambed of Spruce Laurel
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Hydrogeologic Factors
Affecting the Models

Overburden Depth

Type and Proximity of Adjacent Mining
Geologic Framework

- Coal Barrier Thickness

- Structure, Hydraulic Gradient

- Lineaments, Seam Discontinuities

Characteristics of the Coal Barrier, Roof Overburden,
Floor

- Lithology, Coal cleats, SRF and Mine-Induced Fractures
- Mine Floor Topography

Roof/Floor can behave as Acquitards in Mines
- Significantly Lower Kh than adj. Abandoned Workings



Igh—extraction Mining: Roof Strata
Disturbance Zones
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Guyan & Hampton mine pool levels

Surface and mine pool elevations vs downstream distance parallel to the stream

Guyan Mine pool 1186 ft Hampton #4 Mine pool
4 (328/98) 1066 ft (5/15/98)
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Hampton #4 Mine pool
1034 ft (1/26/98)

- #2 Gas Coal Seam Elevation Hampton #3 Mine pool
Stream channel Elevations Elevation 885.5 ft (maintained)
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Figure 14: Plot of mine pool potentiometric surface elevations in relation to stream channel elevations and

downstream distance along Spruce Laurel Fork. A 5 ft barrier e hatween-ad ent-mines-




=T LIORNOi
) ' | e

h | S uppty well
- L
v A 3 .\ )

nght (:c Min
Q \ amo =1 .

C oy —
S

2 Kilometers



What the Streamflow
Data Shows



station _IStreamflow Streamflow
gpm/acre | 1/25/1998
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Spruce Laurel Fork moderate baseflow-assessment of impacts from mmmg
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Using WCMS-HSPF
to Model Streamflow



Measured Streamflow v.WVU-WCMS

30-Year Flow Average Model
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Reed (1998)

25-Jan-98
qpm
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Measured Streamflow v.WVU-WCMS
7/Q10 Flow Model
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Conceptual Hydrologic Model

Roof rock
(overburden) sags
with bedding-plane
separations

N~

1034’
Pool level MSL

Upgradient Hampton

Modified after McCoy et al., 2006
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Using GMS
to Model Ground Water



Darcian Elow
Assumpitions



“Does this apply always, sometimes, or never?”




Darcian Assumptions

® Mines are fully flooded and at equilibrium
® Ground water flow Is laminar and follows the

downgradient direction
s Ground water flow Is horizontal

- Flow may extend into overburden from the
coal barrier that separates adjacent mines

m Agquifer iIs homogenous and Isotropic

m Seepage flow from mine pools follows the
coal seam cleat systems



MODFLOW Packages Used iIn
SLF Modeling

River
Well
Horizontal Flow Barrier
Specific Heads
Recharge
Drain-Seepage Faces
~low-LPF (Layer Property Flow)
- Two layer model; both non-confining
+ Overburden
+ Mined coal seam Iin Hampton, Guyan mines




Pirated” SLF enters into mines and
creates mine pools
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GMS Model

Horizontal flow
barriers, hyd. Char
(kh/Layer2 thk)

No flow
boundaries

Boundary Conditions

Specified

Recharge zones
with assigned
values for
recharge over
mines

Mine well/shaft
with assigned
ump rates

ruce Laurel Fork
river with assigned
stages, river
bottom, and
computed
conductance




River Package

m Stream-Aquifer System

- If Head Is above River Stage, Flow Is from
Aquifer to River

- If Head 1s below River Stage, Flow Is from River
to Aquifer

= Reach Attributes, Required Parameters
- Elevation of the Top of the Streambed
- Elevation of the Bottom of the Streambed
- Conductance



River Package-SLF Conductance

River Conductance

L = Length
of reach

K = Hydraulic
conductivity of
river bed
M= malerial
Thickness of
river bed

W = Width of river

K*(area of flow) KLW
(length of flow) M

Copyright & 2005 - Norman L. Jores
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Station

Stream
Elev.

Stream
Bottom

(m)

(m)

Bottom

442.0

441.7

C1

428.2

427.9

cz2

424.0

423.7

C3

422 1

421.8

C4

419.1

418.8

C5

416.1

415.7

Al

399.9

399.6

A2

383.2

392.9

A3

379.5

Ad

373.4

3792

373.1

A5

363.9

363.6

A6
A7

350.2
347.8

349.9
347.5

A7a

340.2

339.9

A8

338.3

338.0

Ag

322.2

321.9

321.3

321.0

314.6

314.2

310.9

310.6

308.2

307.8

305.4

305.1

302.7

302.4

297.2

296.9

289.6

289.3

285.9

285.6

278.9

278.6

244.8

244 .4

Computed SLF River Conductance

Station

Conductance

(m"2/d)/(m)

Bottom
C1

1987.2

1589.8

c2

1189.9

C3

1135.5

C4

1399.4

C5

518.9

Al

50000.0

A2

2394.2

A3

482.3

A4

596.8

A5

445.6

A6

23942

A7

1987.2

596.8

A8

1122.7

Ad

794.9

807.8

1494.1

3312.0

4968.0

3312.0

3974.4

o677.7

5229.5

4968.0

6021.8

6624.0




Data for GMS Modeling

= Literature Values

- Recharge

- Horizontal and Vertical Hydraulic Conductivity
m Back-calculating Hydraulic Values from SLF

Mining History

- Recharge

- Hydraulic Conductivity
m Spruce Laurel Fork data

- River Conductance

- Seepage Faces



Ground Water Model Runs
Low Pumping Rates
High Pumpimg Rates



Low Pumping Rate-Layer 1
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Low Pumping Rate-Layer 2

%d

5T
407 9351
3798554
351 8578
3238172
295 7766
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River
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1
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Low Pumping Rate-Flow Budget

i Flow Budget

Cells | Zones |

Mumber of zelected cells: 0 [data for all cells is displayed below)

ow In Contributions
- Rivers=68 %

- Recharge=18 %

- Constant heads=14 %

| m Flow Out
:::ll Source/Sink ;I.'Il:ll]z-llﬂ'l 5433242 ;ll;ll 02357286031 C O n tr i b u ti O n S

Battom oo 0o

= 0 0t - Well=0.6 %

Flow In Flow Out
Sources/Sinks

152577, 74043371

Back nn 0o

- Rivers=99 %

Total Zone Flow 0.0 0.0

TOTAL FLOW 1102491.5483242 -1102357.286031 -+ LOS | n g Stream

Summary In - Out % difference
Sources/Sinks 134.26229307614 0.01 21780791227
Cell To Cell 0.0 0.0

Takal 1734 IEFIOINTEAA 0 7an7Fal > 7



High Pump Rate-Layer

Qed

4359871
407 9612
379.9353
351 9094
323 8536
295 8577

267 5315

. 239.5080

Map Symbols
River
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Horiz. Flowe Biarr.
el
Drain
River
Dy Cells
Flooded Cells

Changing Head




High pump Rate-Layer 2
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High Pump Rate-Flow Budget

&% Flow Budget

Cellz |E|:|r'|E:E: |

Murnber of zelected cellz: O [data for all cells iz dizplayed below)

Storage
Constant heads
Or

General heads

R ge
Evapotranspiration
Lake

Total SourcefSink

Top

Bottom

Left

Right

Back

Frant

Total Zone Flow

TOTAL FLOW

Summary
Sourcesz/Sinks
Cell To Cell
Total

BEZ9369.929504
0.0

¥524342 6959882
]
]
]
]
0o
0o

0.0
7524342 6959882

In - Dut
134.22231113724
0.0
134.22231113724

-F445393.474535

1220

-7h24208. 473677
0.0
0.0
0.0
0.0
n.n
0.0

0.0
-7524208.473677

% difference
0.0017838410152
0.0
0.0017838410152

ow In Contributions
- Rivers=23 %

- Recharge=3 %

- Constant heads=74 %

m Flow Out
Contributions

- Rivers=99 %
+ Losing stream




GMS SLF Models Show

Gaining )
stream Flan view

= In gaining reaches, the
equipotential lines form
“V”’s pointing
upstream

= In losing reaches, the
equipotenital lines
form “V’’s pointing
downstream
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Conclusions and Recommendations

m T he results of this project illustrate how the WCMS-HSPF
and GMS applications modeled surface and ground water

s WCMS-HSPF application successfully modeled the
hydrology of the Spruce Laurel Fork watershed

m GMS application model still needs considerable refinement
- Requires much more site-specific data
+ Hydraulic parameters, I.e., Kh, Kv, recharge
- Boundary conditions, regional constant (specific) heads

= OSM business practices need predictive models that more
accurately simulates potential or consequences of
underground mining

= Models must accurately simulate dewatered stream
reaches, mine pool development, and potential artesian
conditions and likely breakout locations



The End
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